pytest-benchmark
Release 2.5.0

September 13, 2015

Contents

1 Overview

1.1 pytest-benchmark

2 Installation

4.1 pytest_benchmark,

5.1 Bugreports e e e
5.2 Documentation improvements

3 Usage
4 Reference
5 Contributing
5.3 Feature requests and feedback
6 Authors
7 Changelog

71 250(2015-0620) « o v o e
72 2401(2015-03-16) « o v o v
73 240(2015-03-12) « o v ot
T4 230Q014-1227) « o o
75 220Q014-1226) « o o oo
7.6 210 (2014-1220) « o v ot
77 2.00Q2014-12-19) © o oot
78 1.0.0(2014-12-15) © o v o v e
TO V(D)

8 Indices and tables

Python Module Index

54 Development L

11

.................... 11

13

.................... 13
.................... 13
.................... 13
.................... 13

15

.................... 18

pytest-benchmark, Release 2.5.0

Contents:

Contents 1

pytest-benchmark, Release 2.5.0

2 Contents

CHAPTER 1

Overview

1.1 pytest-benchmark

docs
tests

package

A py . test fixture for benchmarking code. It will group the tests into rounds that are calibrated to the chosen timer.
See: calibration.

¢ Free software: BSD license

1.1.1 Installation

‘pip install pytest-benchmark

1.1.2 Usage

This plugin provides a benchmark fixture. This fixture is a callable object that will benchmark any function passed to
it.

Example:

def something (duration=0.000001) :
return time.sleep (duration)
def test_my_ stuff (benchmark) :

result = benchmark (something)

assert result is

You can also pass extra arguments:

pytest-benchmark, Release 2.5.0

def

test_my_ stuff (benchmark) :

result = benchmark (something, 0.02)

If you need to do some wrapping (like special setup), you can use it as a decorator around a wrapper function:

def

test_my stuff (benchmark) :
@benchmark
def result():

return something(0.0002)

assert result is

pPy.

test command-line options:

--benchmark-min-time=BENCHMARK_MIN_TIME Minimum time per round. De-

fault: 25.00us

--benchmark-max-time=BENCHMARK_MAX TIME Maximum time to spend in a

benchmark. Default: 1.00s

--benchmark-min-rounds=BENCHMARK_MIN_ROUNDS Minimum rounds, even if

total time would exceed —max-time. Default: 5

--benchmark-sort=BENCHMARK_SORT Column to sort on. Can be one of: ‘min’,

3

max’, ‘mean’ or ‘stddev’. Default: min

--benchmark-timer=BENCHMARK_TIMER Timer to use when measuring time. De-

fault: time.perf_counter

--benchmark-warmup Runs the benchmarks two times. Discards data from the first run.

--benchmark-warmup-iterations=BENCHMARK_WARMUP_ITERATIONS Max
number of iterations to run in the warmup phase. Default: 100000

--benchmark-verbose Dump diagnostic and progress information.
--benchmark-disable-gc Disable GC during benchmarks.
--benchmark-skip Skip running any benchmarks.

--benchmark-only Only run benchmarks.

Setting per-test options:

@pytest.mark.benchmark (

def

group= ’
min_time=0.1,
max_time=0.5,
min_rounds=5,
timer=time.time,
disable_gc= ,
warmup=

test_my_ stuff (benchmark) :
@benchmark

def result () :

return time.sleep(0.000001)

Chapter 1. Overview

pytest-benchmark, Release 2.5.0

assert result is

1.1.3 Glossary

Iteration A single run of your benchmarked function.
Round A set of iterations. The size of a round is computed in the calibration phase.

Stats are computed with rounds, not with iterations. The duration for a round is an average of all the
iterations in that round.

See: calibration for an explanation of why it’s like this.

1.1.4 Features

Calibration

pytest-benchmark will run your function multiple times between measurements. A round ‘is that set of runs done
between measurements. This is quite similar to the builtin ‘‘timeit‘ module but it’s more robust.

The problem with measuring single runs appears when you have very fast code. To illustrate:

In other words, a round is a set of runs that are averaged together, those resulting numbers are then used to compute
the result tables. The default settings will try to keep the round small enough (so that you get to see variance), but not
too small, because then you have the timer calibration issues illustrated above (your test function is faster than or as
fast as the resolution of the timer).

Patch utilities

Suppose you want to benchmark an internal function from a class:

class Foo () :
def _ init_ (, arg=0.01):
.arg = arg

def run/()z
.internal (.arqg)

def internal (, duration):
time.sleep (duration)

With the benchmark fixture this is quite hard to test if you don’t control the Foo code or it has very complicated
construction.

For this there’s an experimental benchmark_weave fixture that can patch stuff using aspectlib (make sure you pip
install apectlib or pip install pytest-benchmark[aspect]):

def test_foo (benchmark_weave) :
with benchmark_weave (Foo.internal, lazy=) e
f = Foo()
f.run ()

1.1. pytest-benchmark 5

https://github.com/ionelmc/python-aspectlib

pytest-benchmark, Release 2.5.0

1.1.5 Documentation

https://pytest-benchmark.readthedocs.org/

1.1.6 Obligatory screenshot

1.1.7 Development

To run the all tests run:

‘tox

1.1.8 Credits

* Timing code and ideas taken from: https://bitbucket.org/haypo/misc/src/tip/python/benchmark.py

6 Chapter 1. Overview

https://pytest-benchmark.readthedocs.org/
https://bitbucket.org/haypo/misc/src/tip/python/benchmark.py

CHAPTER 2

Installation

At the command line:

pip install pytest-benchmark

pytest-benchmark, Release 2.5.0

8 Chapter 2. Installation

CHAPTER 3

Usage

To use pytest-benchmark in a project:

import pytest_benchmark

pytest-benchmark, Release 2.5.0

10 Chapter 3. Usage

CHAPTER 4

Reference

4.1 pytest_benchmark

11

pytest-benchmark, Release 2.5.0

12 Chapter 4. Reference

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

5.1 Bug reports

When reporting a bug please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

¢ Detailed steps to reproduce the bug.

5.2 Documentation improvements

pytest-benchmark could always use more documentation, whether as part of the official pytest-benchmark docs, in
docstrings, or even on the web in blog posts, articles, and such.

5.3 Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/ionelmc/pytest-benchmark/issues.
If you are proposing a feature:

¢ Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

5.4 Development

To set up pytest-benchmark for local development:
1. Fork pytest-benchmark on GitHub.
2. Clone your fork locally:

13

https://github.com/ionelmc/pytest-benchmark/issues
https://github.com/ionelmc/pytest-benchmark/issues
https://github.com/ionelmc/pytest-benchmark/fork

pytest-benchmark, Release 2.5.0

git clone git@github.com:your_name_here/pytest-benchmark.git

3. Create a branch for local development:

‘ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

4. When you’re done making changes, run all the checks, doc builder and spell checker with tox one command:

‘ tox

5. Commit your changes and push your branch to GitHub:

git add
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

6. Submit a pull request through the GitHub website.

5.4.1 Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.
For merging, you should:

1. Include passing tests (run tox) '

2. Update documentation when there’s new API, functionality etc.

3. Add a note to CHANGELOG. rst about the changes.

4. Add yourself to AUTHORS . rst.

5.4.2 Tips

To run a subset of tests:

’tox —e envname —-- py.test -k test_myfeature

To run all the test environments in parallel (youneed to pip install detox):

‘detox

1If you don’t have all the necessary python versions available locally you can rely on Travis - it will run the tests for each change you add in the
pull request.
It will be slower though ...

14 Chapter 5. Contributing

http://tox.readthedocs.org/en/latest/install.html
https://travis-ci.org/ionelmc/pytest-benchmark/pull_requests

CHAPTER 6

Authors

¢ Jonel Cristian Marie - http://blog.ionelmc.ro

e Marc Abramowitz - http://marc-abramowitz.com

15

http://blog.ionelmc.ro
http://marc-abramowitz.com

pytest-benchmark, Release 2.5.0

16 Chapter 6. Authors

CHAPTER 7

Changelog

7.1 2.5.0 (2015-06-20)

* Improved test suite a bit (not using cram anymore).
* Improved help text on the ——benchmark-warmup option.

e Made warmup_iterations available as a marker argument (eg:
@pytest.mark.benchmark (warmup_iterations=1234)).

* Fixed ——benchmark—-verbose‘s printouts to work properly with output capturing.
* Changed how warmup iterations are computed (now number of total iterations is used, instead of just the rounds).
* Fixed a bug where calibration would run forever.

* Disabled red/green coloring (it was kinda random) when there’s a single test in the results table.

7.2 2.4.1 (2015-03-16)

* Fix regression, plugin was raising ValueError: no option named ’‘dist’ when xdist wasn’t in-
stalled.

7.3 2.4.0 (2015-03-12)

* Add abenchmark_weave experimental fixture.
* Fix internal failures when xdist plugin is active.

* Automatically disable benchmarks if xdist is active.

7.4 2.3.0 (2014-12-27)

* Moved the warmup in the calibration phase. Solves issues with benchmarking on PyPy.

Added a ——benchmark-warmup-iterations option to fine-tune that.

17

pytest-benchmark, Release 2.5.0

7.5 2.2.0 (2014-12-26)

¢ Make the default rounds smaller (so that variance is more accurate).

¢ Show the defaults in the ——he1p section.

7.6 2.1.0 (2014-12-20)

» Simplify the calibration code so that the round is smaller.

* Add diagnostic output for calibration code (——benchmark-verbose).

7.7 2.0.0 (2014-12-19)

* Replace the context-manager based API with a simple callback interface.

* Implement timer calibration for precise measurements.

7.8 1.0.0 (2014-12-15)

¢ Use a precise default timer for PyPy.

7.9 2 (?)

* Readme and styling fixes (contributed by Marc Abramowitz)

* Lots of wild changes.

18

Chapter 7. Changelog

CHAPTER 8

Indices and tables

¢ genindex
* modindex

e search

19

pytest-benchmark, Release 2.5.0

20 Chapter 8. Indices and tables

Python Module Index

P

pytest_benchmark, 11

21

pytest-benchmark, Release 2.5.0

22 Python Module Index

Index

P

pytest_benchmark (module), 11

23

	Overview
	pytest-benchmark

	Installation
	Usage
	Reference
	pytest_benchmark

	Contributing
	Bug reports
	Documentation improvements
	Feature requests and feedback
	Development

	Authors
	Changelog
	2.5.0 (2015-06-20)
	2.4.1 (2015-03-16)
	2.4.0 (2015-03-12)
	2.3.0 (2014-12-27)
	2.2.0 (2014-12-26)
	2.1.0 (2014-12-20)
	2.0.0 (2014-12-19)
	1.0.0 (2014-12-15)
	? (?)

	Indices and tables
	Python Module Index

